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In this paper we extend the familiar concept of spatial instability and growth of
disturbances in the downstream direction to include spatial instability and growth in
the wall-normal direction. The stability theory of boundary layers has generally been
concerned with determining the evolution of disturbances inside a boundary layer
(this is where disturbances have their largest amplitudes and can cause a laminar
boundary layer to become turbulent). Outside a boundary layer, where the basic flow
is uniform, normal-mode disturbances decay exponentially with distance from the wall
to satisfy homogeneous boundary conditions. In this paper we present a surprising
scenario where an impulsive disturbance, made up of a superposition of these normal
modes, nonetheless grows exponentially with distance from the wall. While the
usual convective instability with exponential growth in the downstream direction
can be efficiently characterized by spatial modes with complex wavenumbers, the new
convective instability can be efficiently characterized by modes with exponentially
diverging ‘eigenfunctions’ obtained by moving certain branch-cuts in the complex
wavenumber plane. The new instability is therefore associated with an interaction
between the discrete spectrum and the continuous spectrum. We emphasize, however,
that the homogeneous boundary conditions are always satisfied, and that at any finite
time exponential growth only occurs over a finite distance from the wall, but this
distance increases linearly with time. Interactions between poles and branch-cuts have
been found before, but the results presented here provide a physical interpretation
for this spectral behaviour. A further curiosity is that some of these divergent modes
have been found to violate Howard’s semi-circle theorem.

1. Introduction
In this paper we consider linearized disturbances to a boundary layer. In particular,

and somewhat unusually, we focus attention on those parts of the disturbances that
extend outside of the boundary layer. This is the part of the disturbance solution to
which the outer homogeneous boundary conditions are applied in order to obtain
the dispersion relation. A simple calculation, shown below, then shows that outside
the shear layer, where the basic flow is essentially uniform, normal modes decay
exponentially with distance from the wall, seemingly indicating that no interesting
behaviour should be expected outside the boundary layer.

However, we present here an example where an impulsive initial condition excites
a superposition of normal modes whose collective behaviour produces a wavepacket
that propagates in the wall-normal direction and grows exponentially in the wall-
normal direction. This appears to be paradoxical because there is no source of energy
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outside the boundary layer (the Reynolds stress is proportional to the mean shear,
and is therefore zero outside the boundary layer) to sustain this growth. It is shown
that the mechanism for producing this growth can be understood by considering
the complete evolution of the disturbance in both downstream and wall-normal
directions. This anomalous behaviour persists until the wavepacket has propagated
a distance comparable to the length scale over which the basic flow is evolving, and
so can be made arbitrarily large by increasing the Reynolds number (provided that
a laminar basic flow is maintained). The behaviour has been found in an inviscid
stability problem, and will also exist when viscosity is included.

Although our example involves a boundary-layer basic flow, the new behaviour
could, in principle, arise whenever the basic flow can be considered unbounded in
the direction normal to the direction of the flow in the shear layer, e.g. free shear
layers, plane and circular wakes and jets etc. Indeed, as discussed in the conclusions,
§ 6 below, there is evidence that growth may occur outside of some of these flows as
well.

The stability equations for disturbances to parallel shear layers are routinely derived
in textbooks on hydrodynamic stability theory, e.g. Lin (1955), Chandrasekhar (1961),
Drazin & Reid (1981), Schmid & Henningson (2001), Drazin (2002), etc. In the inviscid
two-dimensional version of the problem, the flow is often expressed as a sum of the
prescribed basic flow in the x-direction, U (y), where y is in the direction normal
to the flow, and a small-amplitude unsteady component for the disturbance. The
governing equations are then linearized in the disturbance quantities. The evolution
of the disturbance from some given initial-value boundary-value problem can then be
found by decomposing the disturbance into a superposition of modes proportional
to v(y) exp i(αx − ωt), where v is the component of the disturbance velocity in the
y-direction, t is time, α is the streamwise wavenumber and ω is the angular frequency.
These modes are then found to satisfy the Rayleigh equation

(U − c)(v′′ − α2v) − U ′′v = 0 (1.1)

where c =ω/α. The solution to the initial-value boundary-value problem can be
realized in practice by taking appropriate inverse Fourier transforms, see, e.g., (2.11)
below.

We shall refer to any modes that satisfy homogeneous boundary conditions as
normal modes, or the discrete sprectrum. For a boundary layer adjacent to a plate
at y = 0, these boundary conditions are v(0) = 0 and limy→∞ v(y) = 0. However, if
there are branch-cuts in the transform planes, then these will contribute continuous
spectra to the solution as well. Boundary layers, and other unbounded flows in the
y-direction, have only a finite number of normal modes (and often only one unstable
normal mode) and the continuous spectra are particularly important in describing
the solution near the disturbance source. In these flows a continuous spectrum arises
from the behaviour of v for large y, where U → const. and U ′′ → 0, which reduces
(1.1) to

v′′ − α2v = 0, (1.2)

provided limy→∞ U (y) �= c, with general solution

v = C1 exp(−
√

α2y) + C2 exp(
√

α2y). (1.3)

We shall take the square-root symbol to denote the root with positive real part. This
choice of square-root means that homogeneous boundary conditions are satisfied
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when C2 = 0, and it means that the branch-cuts for the square-root are placed along
the imaginary axes of the complex α-plane.

Note that for inviscid problems there is a second continuous spectrum associated
with branch-cuts emanating from the logarithmic singularity at critical points, yc,
where U (yc) = c. Discussion of these branch-cuts will be deferred until later; our
primary interest here lies in the branch-cuts associated with the decay of solutions as
y → ∞.

The contours of integration in the inverse Fourier transform can be placed along
the real wavenumber axis provided that the contour in the complex frequency plane
lies above all singularities in the frequency plane so that the principle of causality
is observed. If there are no branch-cuts associated with decay as y → ∞ (e.g. in
a flow of finite extent in the y-direction), the integration contours in the complex
wavenumber plane can be closed by introducing semi-circular arcs of large radius, and
evaluated using Cauchy’s residue theorem. The solution will then be a superposition
of the normal modes produced by poles in the integrand. However, if there are
branch-cuts along the imaginary wavenumber axes, then the contours cannot cross
them, and so the large semi-circular arcs must be deformed to run down and around
the imaginary axes, see figure 1(a), for example. The contribution to the inverse
transform from the sides of the branch-cuts represents the continuous spectrum. The
continuous spectrum describes the disturbance close to its source (the ‘near field’);
the discrete spectrum (if it exists, and is not heavily damped) describes the normal-
mode behaviour of the disturbance far from the source (the ‘far field’). Contours
closed in the upper half-plane give the physical solution downstream of the source;
contours closed in the lower half-plane give the physical solution upstream of the
source.

In principle, unstable disturbances can always be described using the configuration
shown in figure 1(a), where the wavenumber is real (the contour runs along the
real axis), and the frequency is complex. This is called a temporal stability analysis.
However, for some flows, it is possible to lower the contour in the frequency plane
to (or just below) the real axis, while simultaneously deforming the contour in
the wavenumber plane away from the real axis, as in figure 1(b), to prevent any
poles from crossing the integration contour. If a pole crosses from the upper to the
lower half-plane, as in the figure, then it corresponds to a normal mode that grows
exponentially in the downstream direction. This representation of the disturbance
using a real frequency and complex wavenumber is called a spatial stability analysis,
and is useful in describing experiments involving periodically forced disturbances.
This transformation of a temporal mode into a spatial mode, and a relation between
the growth rates of the two, was given by Gaster (1962) for small growth rates, while
Briggs (1964) describes the procedure in terms of a simultaneous deformation of
integration contours that can be used for growth rates of arbitrary magnitude.

If the deformation can be accomplished, as in figure 1(b), then the flow is called
convectively unstable and a disturbance with real frequency can grow exponentially
with downstream distance, like that calculated by Gaster (1965). However, as shown in
Briggs (1964), the deformation must be halted if a pole from one half-plane coalesces
with a pole from the other half-plane before the imaginary part of the frequency
has reached zero. In this case, the integration contour becomes ‘pinched’ between the
poles, neither of which it can cross. There is then growth in time as well as space,
and the flow is called absolutely unstable. The pinch point is in fact a saddle point
of the integrand, and Gaster (1968) independently discovered the distinction between
convective and absolute instability using a saddle-point theory. Briggs’ pinch-point
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Figure 1. Examples of positions of poles (disks) giving normal modes for a given frequency,
branch-cuts (hatched lines) giving the continuous spectrum and possible contours of integration
(solid lines with arrows) in the complex wavenumber plane. Dashed lines indicate paths taken
by poles as the imaginary part of the frequency is reduced to zero in the complex frequency
plane. The contours can be closed in the upper half-plane when x > 0, and in the lower
half-plane when x < 0.

method corresponds to checking that the integration contour lies within the valleys
of the saddle point for the rest frame.

However, the present paper is concerned with another scenario, one in which, as the
imaginary part of the frequency is reduced towards zero, a pole first crosses the real
axis of the complex wavenumber plane, as in figure 1(b), but then goes on to cross
the imaginary axis as well, as in figure 1(c). The integration contour must remain on
the same side of the pole, and yet also cannot cross the branch-cut, so the branch-cut
must be moved to accommodate the pole and contour, as suggested by Bers (1983) in
a plasma physics context. However, Bers gives no actual example of this behaviour
in the wavenumber plane, nor does he discuss what, if any, physical consequences
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there might be (the branch-cut he considered arose directly from the model equations,
rather than as part of the solution as in (1.3)).

Furthermore, there seem at first sight to be strong physical arguments against
moving the branch-cuts. Moving a branch-cut away from the imaginary axis
corresponds to switching to the exponentially diverging solution to (1.2), i.e. taking
C1 = 0 and C2 �= 0 in (1.3). Clearly, this solution fails to satisfy homogeneous boundary
conditions, but this objection can be overcome by recognizing that a normal-mode
solution only emerges as a far-field approximation to the solution of the initial-value
problem; the normal mode does not appear instantaneously over an infinitely large
domain. The solution is only required at finite times after the introduction of the dis-
turbance, and at finite times the disturbance has only propagated a finite distance in
the wall-normal direction. Beyond this finite distance, the undisturbed flow continues
to satisfy homogeneous boundary conditions.

This picture of exponential growth over a certain wall-normal distance, followed
by decay, resembles the behaviour of certain ‘leaky waves’ that can arise over a
fluid-loaded elastic plate, see Crighton (1989). There is a uniform flow over the plate,
and the plate is subject to periodic forcing at a point. Waves propagating in the plate
downstream from the source are attenuated exponentially with downstream distance
by radiating acoustic waves into the stream. The wave intensity in the stream is then
found to increase exponentially with wall-normal distance into the stream. This is
because the waves encountered further from the wall were excited further upstream
where the wave in the plate was larger. However, this wall-normal growth eventually
terminates when the Mach-cone (or Mach-wedge) for the source is reached, i.e. when
those waves excited at the point forcing are reached, which are the largest waves in the
system. Beyond the Mach-cone, a quiet zone is encountered, and there is decay in the
wave intensity.

However, there are also significant differences between the behaviour of the
disturbances associated with figure 1(c) and the behaviour of the leaky waves
just described. The finite wall-normal distance over which the leaky waves grow
is proportional to the downstream distance from the source, but for the waves of
figure 1(c) this distance increases, in principle indefinitely, in proportion to time.
This growth in the wall-normal direction suggests we are dealing with a new type
of convective instability since the disturbance can propagate arbitrarily far from the
source, and grow arbitrarily large in the process. This in turn raises the question
of where the energy comes from in order to drive and sustain this instability. In
a conventional convective instability where the disturbance propagates downstream
through the boundary layer, it gains energy from the basic shear via the Reynolds
stress terms as it propagates. However, outside the boundary layer there is no basic
shear, and hence no source of energy. Nonetheless, as with the leaky waves, we
shall show that the growth in the new convective instability can be understood by
considering the propagation in both streamwise and wall-normal directions together.

This work was motivated by a recent asymptotic long-wave inviscid stability theory
for the rotating-disk boundary layer, see Healey (2006), which predicted that the
dominant saddle point (pinch point) becomes asymptotically close to the imaginary
axis of the complex wavenumber plane as wavelengths increase. It also predicted that
spatial branches (loci of poles as the real part of the frequency is varied) close to the
saddle point cross the imaginary axis, like in figure 1(c).

In § 2 we discuss the physical problem, present the linearized stability equations (a
three-dimensional version of the Rayleigh equation (1.1)) and express the solution
to the initial-value problem in terms of inverse Fourier transforms. In § 3 numerical
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solutions of the Rayleigh equation are used to show how the pinch-point solutions
first found for this problem by Lingwood (1995) approach one of the branch-cuts, and
that for long enough waves the spatial branches do indeed cross the imaginary axis
as predicted by Healey (2006). These numerical calculations locating the dominant
saddle point (pinch point) require a global investigation of the dispersion relation,
which was not possible using the long-wave theory.

In § 4 we extend the saddle-point method for calculating wavepacket propagation
in boundary layers so that it can also be used to calculate propagation and growth
in the wall-normal direction. These saddle points are found to cross the imaginary
axis and have divergent eigenfunctions. The source of energy for this growth is also
investigated in this section by mapping out the disturbance in both the streamwise
and wall-normal directions. In § 5 the wall-normal growth predicted by the divergent
saddles is then compared with numerical integrations of the inverse Fourier transforms
for an impulsive disturbance where the integration paths are chosen such that the
eigenfunctions all decay in the wall-normal direction. Conclusions, and examples of
other flows where this behaviour could appear, are given in § 6.

2. Inviscid stability of the rotating-disk boundary layer
When an infinite disk rotates about its axis of symmetry in an otherwise still fluid,

viscous stresses at the disk surface drag fluid elements near the disk around in almost
circular paths, and centrifugal forces then cause these elements to spiral outwards.
The disk thus acts as a centrifugal fan with a radial flow component that has a
wall-jet character directed away from the axis of rotation. The fluid thrown outwards
in this way is replaced by an axial flow towards the disk surface. The azimuthal flow
component has a typical boundary layer profile, increasing monotonically from zero
at the disk wall to a constant value proportional to the angular velocity of the disk
and the distance to the axis of rotation (when considered, as here, in a frame of
reference rotating with the disk). This basic flow is calculated using Kármán’s (1921)
similarity solution.

The importance of the cross-flow structure to the flow’s stability was first recognized
by Gregory, Stuart & Walker (1955) who observed a set of stationary vortices in an
experimental study, and explained their appearance in terms of an inviscid inflectional
‘cross-flow’ instability. This cross-flow instability generates stationary vortices in many
three-dimensional boundary layers of engineering interest, and they are believed to
be involved in the laminar–turbulent transition process in many of these flows.
Experiments on the rotating-disk boundary layer show that the stationary vortices
are generated by points of surface roughness and grow in the direction of increasing
radius, thus corresponding to a convective instability.

However, Lingwood (1995) showed that this flow becomes absolutely unstable
to travelling waves far enough from the axis of rotation. Lingwood’s location for
convective–absolute transition coincides closely with the location of laminar–turbulent
transition measured in many experimental studies, an observation that has generated
much interest. Moreover, Lingwood found that the absolute instability exists in the
inviscid limit. Healey (2004) used this inviscid result as the leading-order term in a
large-Reynolds-number asymptotic expansion for the upper branch of the neutral
curve for absolute instability in order to determine the effect of non-parallel terms
on the absolute instability in this part of parameter space (they are found to be
destabilizing). There are known to be at least two families of saddle points in the
viscous problem and it was also found by Healey that Lingwood’s saddle points only
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form pinch points on the upper branch of the neutral curve for absolute instability
below a certain finite Reynolds number, and it is a second family of saddle points that
give the dominant saddles that asymptote towards the inviscid results as the Reynolds
number increases. Lingwood’s saddle points, however, do appear to be pinch points
at large Reynolds numbers along the lower branch of the neutral curve, where the
wavelengths increase as the Reynolds number increases.

This motivated Healey (2006) to develop an inviscid long-wave asymptotic
theory for the absolute instability, as a starting point for a large-Reynolds-number
asymptotic long-wave viscous theory for the lower branch of the neutral curve
(Turkyilmazoglou & Gajjar (2001) independently derived an inviscid long-wave theory
as well, but their solution is less complete). Healey’s (2006) theory revealed several
new fundamental features of the absolute instability in the long-wave limit. First,
the absolutely unstable waves are dominated by the radial wall-jet component of the
basic flow profile, except outside the boundary layer, where a small azimuthal cross-
flow dominates (the radial component is exponentially small outside the boundary
layer). Secondly, although the appropriately resolved component of the basic flow
is inflectional, the critical points do not make the most significant contribution to
the growth rate of the absolute instability. Thirdly, there are eight saddle points that
coalesce as the azimuthal wavenumber tends to zero, one of which has exponentially
diverging eigenfunctions, and another of which is the pinch point. The existence of so
many saddles means care must be taken in determining which one is the pinch point
as parameters in the problem are varied. It is the imaginary terms arising from the
interaction of the saddles with each other that generate the dominant contribution to
the instability mechanism (analogous to the inviscid instability mechanism of modal
interaction). However, it is a fourth finding that motivates the present investigation,
which is that the pinch point approaches the imaginary axis of the radial wavenumber
plane as wavelengths increase, leading to modes crossing the imaginary axis as
in figure 1(c). The purpose of this paper is to investigate in detail the physical
consequences of this behaviour of the pinch point.

As first described by Gregory et al. (1955), and in many subsequent studies, e.g.
Healey (2006), the inviscid linearized stability problem for the rotating disk can be
reduced to the Rayleigh equation. We only give a brief summary of the main steps
here. Let the disk rotate at constant angular velocity Ω∗ in an otherwise still viscous
incompressible fluid of kinematic viscosity ν∗. Lengths are then made dimensionless
with the characteristic viscous length scale (ν∗/Ω∗)

1/2, which is the thickness of the
boundary layer that forms over the disk, and time with Ω−1

∗ . The flow field is expanded
as the sum of the Kármán (1921) similarity solution for the basic flow and a small-
amplitude disturbance (which does not take the same similarity structure). These
expressions are substituted into the governing equations for viscous incompressible
flow in cylindrical coordinates rotating with the disk, and linearized in disturbance
quantities.

The disturbances are found to satisfy a set of linear partial differential equations
that can be reduced to ordinary differential equations far from the axis of rotation.
Therefore, let R∗ be the dimensional radius of the position of interest on the disk, then
a Reynolds number, Re, can be introduced that is the ratio of R∗ to the boundary
layer thickness:

Re = R∗

(
Ω∗

ν∗

)1/2

. (2.1)



286 J. J. Healey

A new radial coordinate, ρ, is introduced,

r = Re ρ, (2.2)

where r is the radius scaled by boundary layer thickness; Re � 1 and ρ =O(1) near
the position of interest. If Re α � 1, where α is the radial wavenumber, then the radial
wavelength is small compared with the distance to the axis of rotation, and the basic
flow does not vary significantly on the length scales associated with the disturbance.
This separation between the length scale of disturbance evolution and the length scale
of basic flow evolution allows a WKB formulation to be adopted for the disturbance
structure, in which disturbance quantities like, e.g., the axial velocity component ŵ,
are written in the form

ŵ(r, θ, z, t) = w(ρ, z) exp iRe

(∫
α(ρ) dρ + βθ − ωt

)
(2.3)

where (r, θ, z) are the dimensionless cylindrical coordinates (with the usual notation),
t is dimensionless time and the azimuthal wavenumber Re β is an integer. We assume
Re β � 1 and so will neglect the discretization of the scaled azimuthal wavenumber
β , which is discretized in units of Re−1. The dimensionless angular frequency of the
disturbance, ω, is the dimensional frequency divided by Re Ω∗. Substituting (2.3), and
expressions like it for the other disturbance quantities, into the linearized disturbance
equations and neglecting terms of O(Re−1) gives ordinary differential equations for
inviscid disturbances.

In fact, neglecting O(Re−1) terms not only removes the viscous and non-parallel
terms, but also the Coriolis and streamline curvature terms, and the axial velocity
component of the basic flow. This is the reason that inviscid stability results for the
rotating disk can be applicable to a much wider class of cross-flow stability problems.

The resulting ordinary differential equations for the disturbance quantities can then
be reduced to the Rayleigh equation

(Q − c)(w′′ − γ 2w) − Q′′w = 0 (2.4)

where primes denote differentiation with respect to z,

Q = U +
β

ρα
V, γ 2 = α2 +

(
β

ρ

)2

, c =
ω

ρα
, (2.5a, b, c)

where U and V are the radial and azimuthal components of the basic flow respectively
(note that limz→∞ U = 0 and limz→∞ V = −1). When α and β are real, Q can be
interpreted as the basic flow resolved in the direction of the wavevector of the
disturbance, and (2.4) then corresponds directly to (1.1). However, in the spatio-
temporal analyses presented here, complex α are considered, and then Q has no
immediate physical interpretation.

Roots of the dispersion relation are found by solving (2.4) numerically for some
real value of β/ρ and finding complex values of α and ω/ρ such that the solution for
w satisfies the homogeneous boundary conditions

w(ρ, 0) = 0, lim
z→∞

w(ρ, z) = 0. (2.6a, b)

In practice, we choose a suitably large finite numerical value of z = z∞ where Q has
essentially reached its asymptotic value Q = −β/(ρα). At z = z∞ the solution is taken
to be proportional to

w = exp(−
√

γ 2z) (2.7)
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and the boundary condition (2.6b) is replaced by two initial conditions

w(ρ, z∞) = 1, w′(ρ, z∞) = −
√

γ 2 (2.8a, b)

and either α or ω/ρ is iterated until (2.6a) is satisfied to within some prescribed
tolerance. When solutions with exponentially divergent eigenfunctions are required,
(2.8) is replaced by

w(ρ, z∞) = 1, w′(ρ, z∞) =
√

γ 2. (2.9a, b)

The branch-cuts still lie along the imaginary axes of the complex α-plane, but now
their branch points have moved away from the origin to α = ± iβ/ρ, leaving an
analytic strip of finite thickness along the real α-axis near the origin.

Due care is required with regard to any critical points, z = zc, where Q(zc) = c, since
the solution generally has a logarithmic singularty at a critical point, unless Q′′(zc) = 0,
see Drazin & Reid (1981). The integration path in the complex z-plane must pass
the correct side of each critical point in order to remain on the correct branch of the
complex logarithm and so obtain the correct phase jump across the critical point. The
correct path lies along the real axis when the wavenumbers are real and the fre-
quency has sufficiently large positive imaginary part, i.e. the original configuration
of integration contours in the complex frequency and wavenumber planes used in
constructing the solution to an initial-value problem. This is because then the critical
points all lie away from the real z-axis (c is then complex, but Q is real for real z

and real wavenumbers) and the solution to a well-posed linear problem will remain
continuous and differentiable along the real z-axis if the initial condition is.

However, we are particularly interested in finding the correct paths of integration
for the eigenvalues, and these can be found by lowering the frequency contour towards
the eigenvalues while following the trajectories of the critical points in the complex
z-plane. If a real wavenumber is chosen such that there is a frequency eigenvalue with
positive imaginary part, then reducing the imaginary part of the frequency towards
its value at the eigenvalue will not cause any critical points to cross the real z-axis,
and the path of integration can remain on the real z-axis. If the wavenumber is then
adjusted, one or more of the critical points may cross the real z-axis, in which case
the integration path must be moved away from the real z-axis so as to remain on
the same side of the critical points. A quick calculation shows that the critical points
approach the real z-axis from above if αQ′(zc) > 0 when zc and the wavenumbers
are real, and from below if αQ′(zc) < 0, therefore corresponding to the rule given by
Lin (1955) based on a consideration of the behaviour of the viscous problem as the
Reynolds number tends to infinity.

The selection of the path around a critical point specifies the branch of the complex
logarithmic function that is being used, and hence specifies whether the branch-cut
from the critical point has z → i∞ or z → −i∞ along it. For example, figure 2(a)
shows a possible position for this branch-cut when the integration path lies below the
critical point. This branch-cut in the complex z-plane maps to a branch-cut in the
complex frequency plane, see figure 2 of Huerre & Monkewitz (1985), and therefore,
as mentioned in the Introduction, contributes a continuous spectrum to the physical
solution.

The addition of viscosity regularizes the solution near the critical point, and the
viscous solution decays along the real axis in both directions away from the critical
point. However, the viscous solution does not decay in all directions away from the
critical point in the complex z-plane. In the viscous calculation there are three Stokes
lines radiating from the critical point where the viscous solutions can change from
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Figure 2. (a) Positions of a critical point zc , and branch-cut (hatched line), in the complex
z-plane giving rise to a quasi-mode, where the path must be taken below the real z-axis.
(b) Shaded area indicates the region where the viscous solution dominates when a small
amount of viscosity is introduced (but the viscous wall layer is not shown). (c, d) Schematic
the arrangements of critical points and their branch-cuts of more exotic quasi-modes that have
been found during the course of the present investigation.

decaying to growing exponentially with distance from the critical point. Matching
with the surrounding inviscid solution can be achieved by arranging for the viscous
solutions to decay in sectors that include the real z-axis, but there remains a third
sector where the viscous solution grows exponentially, see Lin (1955). This situation is
illustrated schematically in figure 2(b), where the bulge surrounding the critical point
represents the thickness of the viscous critical layer, and the two Stokes lines that
bound the exponentially growing viscous solution are included (the third Stokes line
drops vertically downwards from the critical point).

Note that when the inviscid solution has been obtained by moving the integration
path away from the real z-axis the solution is no longer defined along the whole real
axis, and a discontinuity exists in the eigenfunction where the path leaves, and then
returns to, the real z-axis. The position of this discontinuity is arbitrary. Such solutions
are clearly not physical, and have been called ‘quasi-modes’, see Briggs, Daugherty &
Levy (1970), but they are nonetheless of physical interest for at least two reasons.
First, the quasi-mode corresponds to the solution of the viscous version of the problem
at large Reynolds numbers, essentially because the dispersion relation in both cases
can be obtained by taking the same path in the complex z-plane along which viscous
terms are negligible (but if the Reynolds number is not large enough the point z =0,
where boundary conditions are applied, may lie inside the viscous critical layer, and
then the viscous solution will differ significantly from the inviscid solution). In the
plasma physics literature, these quasi-modes are also referred to as Landau poles, and
their associated exponential decay referred to as Landau damping. Secondly, even in
the inviscid problem, quasi-modes have been shown to represent the behaviour of the
solution of initial value problems for a certain range of intermediate asymptotic
times, see Shrira & Sazonov (2001). In previous studies quasi-modes have always
been damped, but in the present calculation the dominant unstable saddle point
can be a quasi-mode, i.e. representing an unstable Landau pole. Examples were also
identified where more complicated arrangements of critical points and branch-cuts
occur, see figure 2(c, d), that seem to break the correspondence between quasi-modes



A new instability of the rotating disk 289

and viscous modes because the viscous sector shown in figure 2(b) engulfs the origin
no matter how large the Reynolds number is.†

Calculating quasi-modes requires obtaining the basic flow profiles for complex
values of z, which can be realized by carrying out numerical integration of the basic
flow equations along the same path in the complex z-plane that is required in solving
the Rayleigh equation, as in Healey (1998). Or, if only relatively small continuations
are needed in the complex z-plane, a model, e.g. Padé approximants or Chebyshev
polynomials, could be fitted to the real basic profile and then evaluated for complex
z. However, in the present case neither of these approaches is necessary, because
we were able to obtain an analytic solution for the basic flow by taking a large-z
asymptotic expansion for the basic flow that converges even for z = 0, see Healey
(2006) for details.

Finally, we end this section by presenting the formal solution to the initial-value
boundary-value problem for disturbances to the rotating-disk boundary layer in terms
of inverse Fourier transforms, which will be solved in subsequent sections by both
numerical and asymptotic methods. Note that the basic flow is assumed to be parallel,
so that the WKB formulation (2.3) can be replaced by Fourier modes. The solution
can therefore only be followed over distances over which the basic flow does not
change significantly, though this distance can be made arbitrarily large by increasing
Re.

A time-dependent forcing f̂ (t) of given integer azimuthal wavenumber n= βRe
is switched on at time t = 0, at radius r = r0, on the disk surface z = 0, giving the
boundary condition

ŵ(r, θ, 0, t) = δ(r − r0)f̂ (t)einθ , (2.10)

where f̂ = 0 for t < 0 and the flow is undisturbed before the forcing is switched
on. Fourier transforms are taken of this boundary condition and the disturbance
equations, leading to the Rayleigh equation for w(z; α, β/ρ, ω/ρ) (but in what follows
we shall only make explicit the dependence of w on z), the Fourier transform of ŵ.
The physical solution is then obtained by evaluating the following double inverse
Fourier transform:

ŵ(r, θ, z, t) =
einθ

4π2

∫
A

∫
F

f (ω)

∆
w(z) exp iRe(αρ − ωt) dω dα (2.11)

where ∆(α, β/ρ, ω/ρ) = 0 is the dispersion relation (the roots of which give the non-
trivial solution to the homogeneous problem f = 0). The integration contours F and
A run from −∞ to +∞, with A lying along the real axis of the complex α-plane
(which is free from singularities because at finite t the disturbance produced by f̂ only
extends over a finite range of r , ensuring the convergence of the α-integral), and F

lying above all singularities in the complex ω-plane, corresponding to the Bromwich
contour in Laplace transforms (to respect the principle of causality). A disturbance
localized in the azimuthal direction as well can then be constructed by summing over
n, but we shall study particular real values of n, or equivalently, real β/ρ.

It is possible to determine the propagation properties of a disturbance without
evaluating the double integral (2.11). Briggs (1964) showed that this can be accom-
plished through a consideration of the behaviour of the roots of the dispersion
relation ∆ =0 and their positions relative to the contours of integration F and A.
As mentioned in § 1, we seek to lower F to just below the real axis of the complex

† These calcuations are available in an online supplement to this paper.
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ω-plane to discover whether the temporal instability can be transformed into a spatial
instability, and if it can be, to identify the direction of propagation. A point on
F may generate a number of points in the α-plane that are roots of ∆ =0. The
loci of these roots in the α-plane generated by moving ω along F are called spatial
branches. The spatial branches are plotted for a range of heights of F in the complex
frequency plane. When F is high enough the spatial branches are confined either
to the upper half-plane (downstream propagating modes) or the lower half-plane
(upstream propagating modes). If a spatial branch crosses the real α-axis as F is
lowered, then the A contour is deformed away from the real axis, as in figure 1(b),
to remain on the same side of the branch. However, F cannot be lowered to below
a critical value of Im(ω) where downstream and upstream spatial branches coalesce
since then A becomes pinched between the branches. Such a point is called a pinch
point, and it signifies absolute instability if Im(ω) > 0 at the pinch point.

However, it will be more convenient here to interpret the pinch point as a saddle
point of the dispersion relation. These saddle points arise in the large-time asymptotic
estimation of (2.11), which allows an actual calculation of the propagating wavepacket
to be carried out, rather than simply classifying a flow as being convectively or
absolutely unstable. Therefore, we shall now focus attention on the case of impulsive
forcing f̂ (t) = δ(t), where δ(t) is the Dirac delta function, and hence f = 1. The F

contour is closed in the lower half of the complex ω-plane and evaluated as the sum
of the residues of the poles produced by simple zeros of ∆ =0,

ŵ(r, θ, z, t) =
∑

m

− ieinθ

2π

∫
A

w(z)

∆ω

exp iRe(αρ − ωmt) dα (2.12)

where ωm = ωm(α) is the mth root of ∆ =0 (ωm also depends on β/ρ, but we
are considering the evolution of a particular azimuthal wavenumber with fixed
β/ρ). Equation (2.12) is in the standard form for application of the method of
steepest descents, where, as t → ∞ and ρ/t = O(1), the integral is dominated by the
contributions from certain saddle points of the function φm,

φm = iRe
(
α

ρ

t
− ωm

)
(2.13)

satisfying dφm/dα = 0, i.e.

dωm

dα
=

ρ

t
, (2.14)

see Wong (1989).
However, not all saddles contribute to the integral. For a saddle to make the

dominant contribution, it must be possible to deform A so that it lies entirely within
the valleys of the saddle. A saddle can sometimes contribute to the solution even
when A is not contained by its valleys; such a saddle is called subdominant. The
deformations of A need to be considered for each Riemann surface, i.e. for each index
m. Examples of saddles that contribute to the integral (relevant saddles) and those that
do not (irrelevant saddles) are given below. Saddles are found by plotting contours
of constant Re(φm) in the complex α-plane for a frame of reference moving at a
given constant velocity ρ/t . For the rest frame ρ/t =0, constant Re(φm) corresponds
to constant Im(ωm), and therefore the contours of constant height surrounding the
saddle point correspond to the spatial branches obtained for various F with constant
imaginary parts of the frequency. The spatial branches at the pinch point therefore
correspond to the boundaries of the valleys of the highest saddle, and since the
integration contour A lies within these valleys the pinch point is the dominant saddle in
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the rest frame. However, as ρ/t is moved away from zero, the saddles will move in the
complex α-plane, and their relative heights will change, so that for any given ρ/t the
dominant saddle need not be the continuation of the pinch point of the rest frame.

Note, however, that in some papers the pinch point is referred to as a branch point
instead of as a saddle point. In this paper, the pinch point will always refer to the
dominant saddle point of the complex wavenumber plane. We shall use the term
branch point to refer exclusively to a point in the complex wavenumber plane where
two Riemann surfaces meet, e.g. at which dφm/dα → ∞, or when γ 2 = 0. Branch-cuts
can be drawn from branch points to separate the Riemann surfaces (but not from
saddle points).

3. Behaviour of the pinch point as wavelengths increase
In this section the spatial branches, and pinch points, of the inviscid dispersion

relation obtained by numerical integration of (2.4), with boundary conditions (2.6a)
and (2.8) or (2.9), are investigated as β/ρ is reduced towards zero for the rest
frame ρ/t = 0. Figure 3(a) shows spatial branches when β/ρ =0.036 for a range
of constant values of Im(ω), including values corresponding to two saddle points.
However, this figure is difficult to interpret because spatial branches, i.e. contours of
different heights of Re(φm), intersect one another at points in the complex α-plane.
These intersections arise because there are two temporal branches, i.e. two values
of ωm satisfying ∆ =0, for each value of α, corresponding to different values of the
frequency subscript m. The spatial branches are contours of a multi-valued surface,
and their ‘intersections’ are artifacts generated by projection down onto the complex
α-plane. The two (Riemann) surfaces meet at a branch point where dα/dωm = 0.
Following one root of the dispersion relation along a closed path around this branch
point in the complex α-plane leads continuously to the other root of the dispersion
relation, giving rise to a certain ambiguity in the labelling of the roots denoted by the
subscript m.

It is convenient to remove this ambiguity by introducing a branch-cut radiating
away from the branch point, which defines the extent of a particular root, and
is essentially an instruction to switch from one surface to another (i.e. from one
temporal branch to another). The position of the branch-cut is arbitrary (it only
has to terminate at the branch point) and does not affect the value of the integral
(2.12). Figures 3(b) and 3(c) show the two single-valued surfaces obtained by choosing
the branch-cut to drop vertically downwards from the branch point in the complex
α-plane. The summation over m in (2.12) implies that the physical solution will be
the sum of the integrals along paths across each surface shown in figures 3(b) and
3(c). Both surfaces have the property that the real α-axis for large |Re(α)| lies within
the valleys of the saddle points, and so both saddle points contribute to the physical
solution, with the one shown in figure 3(b) making the dominant contribution since
it has the larger Im(ωm), thus corresponding to the pinch point.

Note that, for example, if the branch-cut is chosen instead to lie vertically above the
branch point, then both saddles would be accessible to the same integration contour.
In this case the contour would pass over the saddle shown in figure 3(b), down the
right-hand valley of this (dominant) saddle, below the branch point, and up the
right-hand side of the branch-cut (now vertically above the branch point) descending,
as it does so, from a hill into the left-hand valley of the saddle in figure 3(c). From
here, it passes over this saddle into its right-hand valley and ultimately to the positive
real α-axis. This illustrates how a subdominant saddle can make an exponentially
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Figure 3. Numerical solutions for the spatial branches for various constant Im(ωm) and
β/ρ = 0.036. Hatched lines on the imaginary axes represent branch-cuts with branch points
at α = ± iβ/ρ. There are saddle points at α = 0.1352 − 0.0928i, ωm = 0.000134+0.005824i
and at α = 0.3207+0.0189i, ωm = 0.002950+0.001717i, where dωm/dα = 0. There is a branch
point at α = 0.2577 − 0.0131i, ωm =0.005468+0.002566i, where dα/dωm =0, from which a
branch-cut has been introduced in (b) and (c). The valleys of each saddle are indicated by a v.

small contribution to the solution, but that to capture this saddle’s contribution it
may be necessary to take a path that includes part of a hill of the saddle. However,
in what follows, we shall generally, in the first instance, place branch-cuts vertically
and so as not to cross the real α-axis. Nonetheless, figure 3 shows the importance
of investigating the Riemann surfaces ‘behind’ any branch-cut, because if only the
surface shown in figure 3(c) had been investigated, then although a saddle would have
been found that looks like a pinch point, it is only by considering the continuation
of this surface beyond the branch-cut, i.e. the surface shown in figure 3(b), that the
true dominant contributing saddle can be found.
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Figure 4. Numerical solutions for the spatial branches for various constant Im(ωm) for (a)
β/ρ = 0.02; (b) β/ρ = 0.012; (c) β/ρ = 0.008; (d) is a detail of (c). Hatched lines are branch-cuts
with branch points at α = ± iβ/ρ. Valleys of the saddles (pinch points) are indicated by a v.

Both saddles in figure 3 correspond to saddles found analytically in the small-β/ρ

long-wave theory presented in Healey (2006). That theory showed that the saddle in
figure 3(b) dominates the saddle in figure 3(c) as β/ρ → 0. However, it also predicts
that the saddle of figure 3(b) approaches the imaginary axis of the complex α-plane.
We now reduce β/ρ to investigate the consequences of this latter prediction.

Figure 4(a–c) shows the progression of the pinch point, and spatial branches,
towards the negative imaginary axis as β/ρ is reduced. Note that the numerical
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solution for the spatial branches near the positive imaginary axes of the diagrams
becomes increasingly challenging for small β/ρ. As discussed in Healey (2005), this
is because in this limit the phase velocity approaches the velocity at the point where
Q′(z) = 0, and this point moves further from the real z-axis. Therefore, the two critical
points become asymptotically close to one another, and lie an O(1) distance from
the real z-axis. The integration path must lie above one of these critical points, and
below the other, requiring a path to be taken between the two. As the critical points
approach each other the integration path becomes trapped between them, causing
the numerical difficulties. In practice, therefore, we expect viscosity to be particularly
important in this part of the complex α-plane.

It can be seen in figure 4(d) that when β/ρ = 0.008 the dominant saddle can only
be reached by moving a part of the branch-cut to the left of the imaginary α-axis. For
β/ρ > 0.008424 the saddle can be reached without moving the branch-cut from the
imaginary α-axis, giving the standard pinch-point behaviour reported by Lingwood
(1995). For β/ρ < 0.008424 the saddle can only be reached by moving the branch-cut
as indicated in figure 4(d), and this corresponds to the behaviour predicted by the
long-wave theory of Healey (2006), see figure 4 of that paper for the corresponding
diagram. Therefore, the inviscid stability problem for the rotating-disk boundary layer
gives rise to the scenario shown in figure 1(c).

However, as discussed in the Introduction, moving the branch-cut as indicated in
figure 4(d) corresponds to choosing the solution to (1.2) that diverges exponentially
in the wall-normal direction, i.e. taking C1 = 0, C2 �= 0 in (1.3). Such a solution does
not satisfy homogeneous boundary conditions, which might lead one to argue that
therefore the branch-cut cannot be moved in this way. Nonetheless, the physical
solution does not depend on the position of the branch-cuts. After all, the physical
solution can be calculated by performing the integration along the real α-axis instead;
the deformation of the α-integration contour to pass through the steepest descent
path of the saddle point is only required in order to make an asymptotic large-time
estimate of the solution to the impulsive forcing.

And yet, there is a physical consequence of spatial branches with Im(ωm) > 0
crossing the imaginary α-axis as in figure 4(d). An idea of the possible physical
consequences can be obtained by considering for a moment the disturbance generated
by a periodic forcing with frequency within the interval that generates that part of
the spatial branch that crosses the imaginary α-axis. Although a normal mode with
such a frequency would have an exponentially diverging eigenfunction, one should
really only consider the evolution of the disturbance from a prescribed initial-value
problem. The flow is undisturbed for t < 0, and after any large enough finite time a
normal-mode-like structure will be set up, growing in the wall-normal direction as it
propagates away from the disturbance source out into the undisturbed flow above the
source. The disturbance will thus always satisfy homogeneous boundary conditions,
but can, in principle, show exponential growth in the wall-normal direction over some
finite, but increasing, distance from the wall.

However, a question remains over where the energy comes from in order to sustain
an exponential growth in the wall-normal direction, since far from the wall there
is no basic flow shear, and hence no Reynolds stress. Also, since the present flow
is absolutely unstable, does it even make sense to consider the response to periodic
forcing described in the preceeding paragraph? These issues will be addressed in the
following sections where detailed asymptotic and numerical studies of solutions of
initial-value problems for the inviscid rotating-disk boundary layer will be carried
out.
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4. Convective instability in the wall-normal direction
The advection of disturbance energy by the disturbance velocity is a nonlinear

process, e.g. see equation (5.25) of Drazin (2002). Nonetheless, the question of how
a disturbance can grow in amplitude in the absence of a local source of energy can
be addressed by considering the propagation characteristics of the disturbance within
the linear theory.

4.1. Wall-normal propagation

Our interest lies principally in the evolution of an impulsive disturbance as it
propagates outside the boundary layer, and the possibility that this can lead to a
disturbance structure with exponential growth in the wall-normal direction. Therefore,
we shall combine the exponential form of the solution outside the boundary layer
(2.7) with the impulse response (2.12) to give

ŵ(r, θ, z, t) =
∑

m

− ieinθ

2π

∫
A

1

∆ω

expRe[i(αρ − ωmt) −
√

γ 2ζ ] dα, (4.1)

where z =Re ζ , and ζ is the axial coordinate scaled in the same way as the radial
coordinate (2.2). At large times this solution is dominated by the contribution made
to the integral by appropriate saddle points of the exponent

φm = Re

[
i
(
α

ρ

t
− ωm

)
−

√
γ 2

ζ

t

]
(4.2)

satisfying dφm/dα =0, i.e.

dωm

dα
=

ρ

t
+

iα√
γ 2

ζ

t
. (4.3)

The addition of the second term in (4.3) allows the disturbance to be calculated in
frames of reference moving in the wall-normal direction. When there is a normal mode
that decays exponentially in the wall-normal direction and ζ/t > 0, the corresponding
term makes a stabilizing contribution to the growth rate Re(φm) of (4.2). However,
if the dominant saddle point found by solving (4.3) moves across the imaginary axis
of the complex α-plane then, in effect, the square-root term in (4.2) changes sign, and
then the ζ/t term makes a destabilizing contribution to the disturbance, reflecting the
exponential growth in the eigenfunction.

The saddle points of figures 3 and 4 correspond to the rest frame ρ/t = ζ/t = 0.
When ζ/t is increased from zero, the dominant saddle point is found to move towards
the imaginary α-axis, see for example figure 5(a), where this saddle (marked A) has
almost reached the imaginary axis. Figure 5(a) also shows the existence of another
saddle point (marked B) constructed from an exponentially divergent eigenfunction,
though for these parameter values it is not the dominant saddle. However, the
arrangement of the valleys of each saddle is such that the integration countour
in the complex α-plane can be deformed to pass through both of them, so they
both contribute to the physical solution, even the one with divergent eigenfunction.
Note that the integration path approaching from the left of these figures lies on the
Riemann surface of decaying eigenfunctions, while the dashed lines in the left half-
plane are spatial branches for growing eigenfunctions. The integration path passes
over this second Riemann surface only after it has travelled around the branch point
at α = −iβ/ρ.

Figure 5(b) shows the effect of increasing ζ/t further. Both saddle points are now
made up of divergent eigenfunctions, and saddle B has become the dominant saddle,
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Figure 5. Contours of constant Re(φm) given by (4.2) for β/ρ = 0.007, ρ/t = 0 and (a)
ζ/t = 0.001; (b) ζ/t = 0.0018; (c) ζ/t = 0.0024. Dashed lines indicate eigenvalues with
exponentially divergent eigenfunctions, solid lines have exponentially decaying eigenfunctions
that satisfy homogeneous boundary conditions. Solid circles at α = ± iβ/ρ give the branch
points where these roots coalesce, but the branch-cuts terminating at these branch points are
not shown. Valleys of saddles are indicated by a v. Dotted lines with arrows are examples of
paths of integration. The saddle marked A corresponds to the pinch point in the rest frame,
i.e. the saddles shown in figure 4.

though saddle A still makes a contribution to the solution because the integration
contour can be brought down the valley from B into the valley to the left of A, then
over the saddle A along A’s steepest descent path, and finally back to the positive
real α-axis within a valley of both A and B. The effect of a further increase in ζ/t

is shown in figure 5(c). Although saddle A is now higher than saddle B, saddle B
remains the dominant saddle, and A makes no contribution to the solution. This is
because the valleys of A do not contain the end-points of the integration contour,
while the valleys of B do, and the integration contour following the steepest descent
path through B cannot reach A without leaving the valleys of B.
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Figure 6. Growth rates predicted by saddles of (4.2) when β/ρ = 0.007 and ρ/t = 0. Solid
lines indicate the dominant saddle, dashed lines indicate saddles that are either subdominant,
or irrelevant. The labels A and B correspond to the saddles shown in figure 5, C corresponds
to the saddle shown in figure 3(c).

The contribution of saddle A is switched off at ζ/t = 0.00216, where the two saddles
have the same height, but there is no associated discontinuity in the solution, because
as the heights of the saddles approach one another, the integration contour from B to
the left-hand valley of A runs between a pair separatrices from each saddle, and then
the contribution from the path back over the saddle A almost cancels that of the path
coming down the hill of A. This cancellation significantly reduces the contribution of
the saddle A when it is just below B, and smoothly reduces its contribution to zero as
A overtakes B in height. The integral representation of the Airy function, Ai, provides
a model problem with two saddles whose heights can change in the manner shown in
figure 5, see Hinch (1991). Situations where both saddles contribute, where dominance
is exchanged, and where one saddle ceases to contribute have been investigated and the
corresponding saddle-point theories compared with direct evaluation of the integral.†

The sequence of diagrams in figure 5(a–c) shows the necessity of mapping out
the separatrices of the saddles (i.e. the level curves passing through the saddles) to
determine which is dominant. The diagrams also show the importance of parameter
values where saddles are at the same height, even if they are widely separated in the
complex α-plane, since at these values either the dominance can change, or a saddle
can become irrelevant to the solution.

These principles have been used to obtain figure 6, which shows the growth rates
(heights) of these two saddles over a range of ζ/t and indicates the dominant
saddle at any given ζ/t . The change in dominance from saddle A to saddle B seen
between figures 5(a) and 5(b) corresponds to the intersection near ζ/t = 0.00127.
The subsequent onset of the irrelevance of A seen between figures 5(b) and 5(c)
corresponds to the intersection near ζ/t = 0.00216. The result is that while the growth
rate of the absolute instability in the rest frame ζ/t = 0 is determined by saddle A,
the leading edge of the wavepacket, which propagates in the wall-normal direction
at velocity ζ/t = 0.0149 is controlled by saddle B. At ζ/t = 0, A is composed of
eigenfunctions that decay in the wall-normal direction, and so increasing ζ/t reduces
the growth rate of the dominant saddle as discussed following (4.3). Similarly, the

† These calculations are available in an online supplement to this paper.
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eigenfunctions for C decay even more rapidly, since C lies further from the imaginary
α-axis, and this causes a stronger stabilization as ζ/t = 0 increases. However, at
ζ/t = 0, B is composed of eigenfunctions that diverge in the wall-normal direction,
and so increasing ζ/t increases the growth rate of this saddle. The initial decay of A,
and growth of B, are clear at the left of figure 6, and lead to the first intersection of
these two curves at ζ/t = 0.00127, transfering dominance to the saddle whose growth
rate increases with increasing ζ/t . Furthermore, this figure shows that the growth rate
of B continues to increase with increasing ζ/t such that the maximum growth rate
occurs for a finite positive value of ζ/t = 0.0042.

This last observation means that at any given moment (large enough for the
saddle-point theory to be accurate) the largest amplitude of the disturbance in the
wall-normal direction lies outside the boundary layer, and this position of maximum
amplitude is moving further outside the boundary layer, with this amplitude growing
all the time. We now show that the existence of a maximum growth outside the
boundary layer is intimately related to the existence of a spatial branch crossing the
imaginary α-axis.

4.2. Spatial branch touching the imaginary axis

First note that there is a well-known result concerning the more usual streamwise
propagation problem, in which the maximum growth rate occurs when the saddle
point crosses the real α-axis (any minimum in growth rate also occurs when the saddle
has real wavenumber, but in what follows we shall sometimes use ‘maximum’ instead
of ‘stationary’, because this is the focus of our interest). When ζ/t =0, a saddle point
with real α has stationary growth rate, Re(φm) in (4.2), with respect to ρ/t because the
coefficient of ρ/t then has zero real part, so that small changes in ρ/t do not change
the growth rate. Furthermore, the point on the real α-axis at which the saddle crosses
the real α-axis is the real wavenumber with maximum temporal growth. Considering
saddles with real wavenumbers in (4.3) gives

dω

dα
=

∂ωr

∂αr

+ i
∂ωi

∂αr

=
ρ

t
(4.4)

where subscripts r and i denote real and imaginary parts respectively (and the
subscript m has been, and will be, dropped when doing so causes no ambiguity).
Equating real and imaginary parts of (4.4) gives

∂ωr

∂αr

=
ρ

t
,

∂ωi

∂αr

= 0, (4.5a, b)

where (4.5b) is the condition for maximum growth rate in a temporal stability analysis.
This argument is readily adapted to the present case of wall-normal propagation

with ζ/t �= 0 and ρ/t = 0. The growth rate is stationary with respect to ζ/t when
the coefficient of ζ/t in (4.2) has zero real part, i.e. when the saddle lies on the
imaginary axis of the wavenumber plane. Considering saddles with purely imaginary
wavenumbers in (4.3) gives

dω

dα
=

∂ωi

∂αi

− i
∂ωr

∂αi

=
iα√
γ 2

ζ

t
(4.6)
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Figure 7. Growth rates predicted by saddles of (4.2) when β/ρ = 0.01. Solid lines indicate
the dominant saddle, dashed lines indicate saddles that are either subdominant, or irrelevant.
Saddles A, B and C correspond to those in figure 6.

and equating real and imaginary parts, for purely imaginary α = iαi with |αi | >β/ρ

(so that the saddle lies where the original branch-cuts were placed), gives

∂ωi

∂αi

= 0,
∂ωr

∂αi

= −αi

[
α2

i −
(

β

ρ

)2
]−1/2

ζ

t
(4.7a, b)

where (4.7a) is the condition for maximum temporal growth rate for purely imaginary
wavenumbers. With ρ/t = 0 and the coefficient of ζ/t purely imaginary, (4.2) shows
that the growth rate is given by ωi , and so by (4.7a), the maximum growth rate of
the wavepacket in the wall-normal direction occurs in the frame of reference where
the saddle point crosses the imaginary axis of the complex α-plane.

Therefore, the spatial branch that first touches the imaginary α-axis in figure 4(d) as
ωi is reduced, has ωi corresponding to the maximum growth rate of the wall-normal
propagating part of the wavepacket. If this branch has larger ωi than the branches
at the dominant saddle (pinch point), then the largest amplitude in the wall-normal
direction will be outside, and propagating away from, the boundary layer. If this
branch has smaller ωi than the branches at the dominant saddle (pinch point), as
in figure 4(b), then the largest amplitude in the wall-normal direction will be inside
the boundary layer, which is the conventional situation. As mentioned earlier, for
this inviscid rotating-disk boundary layer problem the changeover between the case
where the spatial branch touching the imaginary axis has larger ωi than at the
dominant saddle, and the case where ωi is larger at the dominant saddle, occurs
at β/ρ = 0.008424. Figure 7 confirms that for β/ρ = 0.01 > 0.008424 the maximum
growth does indeed occur inside the boundary layer (i.e. as ζ/t → 0), though the
decay outside the boundary layer is not monotonic. It has also been verified that
all the maxima and minima of the curves in figures 6 and 7 do occur when the
corresponding saddle lies on the imaginary α-axis.

4.3. Propagation of energy outside the boundary layer

The question to be addressed now is how growth outside the boundary layer is
possible when there is no source of energy for the disturbance outside the boundary
since then there is no basic shear, and therefore zero Reynolds stress. The answer lies



300 J. J. Healey

0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

0.00007

R
e 

(φ
m

/R
e)

A
A

B

C

ζ/t

B

Figure 8. Growth rates predicted by saddles of (4.2) when β/ρ = 0.007 and ρ/t = 0.0005. Solid
lines indicate the dominant saddle, dashed lines indicate saddles that are either subdominant,
or irrelevant. Saddles A, B and C correspond to the saddles shown in figure 5 at the left
and right ends of the curves, but there is a change in identity of the saddles A and B as ζ/t
increases through 0.0012.

in considering the full propagation of an impulsive disturbance in both streamwise
and wall-normal directions simultaneously.

We shall concentrate on β/ρ = 0.007, which is a case where the largest amplitude
in the wall-normal direction is growing and propagating away from the boundary
layer when ρ/t = 0. In essence, this investigation involves extending the results of
figure 6 to a range of non-zero ρ/t . In particular, neutral curves where saddles have
zero growth rates are followed in (ρ/t, ζ/t) space, so that the unstable region can be
mapped out, and also the loci where saddles have the same growth rates, which can
indicate where changes in the dominance of the saddles take place.

However, before presenting the loci of these neutral curves and the curves where
saddles have coincident growth rates, compare first the results shown in figure 8,
where ρ/t = 0.0005, with those in figure 6, where ρ/t = 0. An exchange in identities
of the saddles labelled A and B has occurred, such that, for example, as A is followed
from left to right in figure 8, it undergoes a metamorphosis, and emerges at the right
of the diagram as saddle B. This behaviour is characteristic of an interaction between
the saddles A and B and indicates that at a value of ρ/t in the range 0 <ρ/t < 0.0005
there is a coalescence of saddle points. At such a point three spatial branches coincide,
and the following conditions are satisfied:

dφm

dα
=

d2φm

dα2
= 0. (4.8)

An example of this type of degenerate branch point was found in a viscous
calculation for the rotating-disk boundary layer by Healey (2004) for the stationary
frame ρ/t = ζ/t = 0, and in that problem too it was associated with changes in the
dominance of two saddle points. As the saddle points approach the coalescence point,
their approximations to the solution (i.e. to the integral (2.12)) both become singular
because d2φm/dα2 → 0, while at the coalescence point itself, the solution depends
on d3φm/dα3, and involves an algebraic term t−1/3. However, Chester, Friedman &
Ursell (1957) have shown how to construct a uniform asymptotic expansion in the
neighbourhood of the coalescence point.
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Figure 9. Growth rates predicted by saddles of (4.2) when β/ρ = 0.007 and ζ/t = 0. Solid
lines indicate the dominant saddle, dashed lines indicate saddles that are either subdominant,
or irrelevant. Saddles A, B and C correspond to those at the left of figures 6 and 8.

Figures 6 and 8 also imply that in the (ρ/t, ζ/t)-plane there will be three lines
originating from this saddle coalescence point where saddles are at the same height,
corresponding to the three intersections between the curves in these two figures. Only
one of these three lines corresponds to a change in dominance of the saddles. We
will encounter a number of saddle coalescence points in the (ρ/t, ζ/t)-plane, and all
will have three lines emanating from them where pairs of saddles have equal height,
but only one, if any, of these lines will correspond to changes in the dominance of
the saddles. Locating saddle coalescence points is therefore key to understanding the
distribution of dominant saddles.

A further helpful step towards constructing the (ρ/t, ζ/t)-plane is to generate the
equivalent diagram to figure 6, but for ζ/t = 0 and ρ/t �= 0 instead. The growth rates of
the saddles for a limited range of relatively small velocities ρ/t is shown in figure 9.
Over the range of this figure, saddle A is dominant, except for −0.00113 <ρ/t <

−0.00082, where C is the dominant unstable saddle. Note that C becomes a quasi-
mode (as defined in § 2) for ρ/t > 0.005 even though it is unstable (an example will
be given later where the dominant unstable saddle is a quasi-mode).

More strangely, B, which has Re(α) < 0 and a divergent eigenfunction, violates
Howard’s semi-circle theorem, Howard (1961). For ρ/t < 0 and ζ/t = 0, the eigen-
values are real with α < 0 and ω > 0 giving a negative phase velocity, but since
β/(ρα) < 0, U � 0 and V � 0 it follows from (2.5a) that Q � 0, i.e. the phase velocity
does not lie between the minimum and maximum values of Q. In fact, Howard’s semi-
circle theorem, and the other theorems describing the stability of inviscid disturbances,
like Rayleigh’s inflection point theorem, are all derived by applying homogeneous
boundary conditions, see Drazin & Reid (1981). Therefore, these derivations do not
apply to modes with divergent eigenfunctions. Nonetheless, our results are consistent
with Rayleigh’s inflection point theorem. Healey (2006) shows that there are no inflec-
tion points for Q if φ < −37.57◦, where tan φ = β/(ρα). This range corresponds to
−0.0091 < α < 0 for β/ρ =0.007, and in this range the eigenvalues for B are all real.

The appearance of non-isolated real eigenvalues in a problem with a smooth
continuous velocity profile is itself unusual because the critical points generally
contribute imaginary terms to the dispersion relation. However, a real dispersion
relation is possible if Howard’s semi-circle theorem is violated, because then the
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Figure 10. Solid lines are the neutral curves for the saddles A, B, C and D of figure 9
continued into the (ρ/t, ζ/t)-plane for β/ρ =0.007. The three dashed lines AB are loci where
saddles A and B have the same growth rates; they meet at a three-way intersection point
where saddles A and B coalesce at ρ/t = 0.00025, ζ/t = 0.00161. The unlabelled dashed line
immediately below the neutral curve for C represents the loci where saddles B and C have
the same growth rates. A vertical dotted line is included at ρ/t = 0, separating upstream from
downstream propagating parts of the disturbance.

critical points can lie at negative z, i.e. inside the plate. Critical points at negative
z make no contribution to the dispersion relation if, as for B, the integration path
passes along the real z-axis.

In fact, the four saddles shown in figure 9 are four of the saddles in the rest frame
ρ/t = ζ/t =0 predicted by the long-wave asymptotic theory presented in Healey
(2006). The wavenumbers of the saddles at leading order as β/ρ → 0 are found by
taking fourth roots of a real positive quantity, see (3.22) of Healey (2006), giving four
solutions of the form α = ±A0, ±iA0, where A0 is real and positive. The saddle A,
which is dominant in the rest frame, and which approaches the negative imaginary
axis of the complex α-plane as β/ρ → 0, corresponds to the root −iA0. Saddle D,
which is damped in the rest frame, corresponds to the root iA0, and is the complex
conjugate of A at leading order in β/ρ. However, D is a quasi-mode, and the small
contribution from the critical points means it is not precisely the complex conjugate
of A at finite β/ρ. The divergent mode B corresponds to the root −A0, and the mode
C corresponds to the root A0.

We now consider the continuation of the results of figure 9 to cases with ζ/t �= 0.
Figure 10 shows the neutral curves for the saddles A, B, C and D, and loci where
pairs of saddles have the same growth rates. This figure summarizes the qualitatively
important features of figures 6, 8 and 9, and extends them. The neutral curves are
generated by taking points in figures 6 and 9 where saddles have zero growth rate,
and continuing them to non-zero ρ/t and ζ/t respectively while keeping the growth
rate zero. The points in figures 6 and 9 where the growth rate curves for the saddles
intersect are continued in a similar way and generate the dashed curves. Note that in
this figure there is no direct indication of the dominance of the saddles in different
parts of the (ρ/t, ζ/t)-plane, nor is there any direct indication of which side of each
neutral curve is stable or unstable, but all of this information can be inferred from
figures 6, 8 and 9 as follows.
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Saddle A is unstable to the right of its neutral curve in figure 10, and is dominant
for most of the ρ/t =0 axis (apart from a small interval −0.00113 < ρ/t < −0.00082
where C is dominant). If saddle A is followed as ζ/t is increased from zero at a
value of ρ/t less than that where the saddle coalescence occurs, e.g. at ρ/t = 0, then
dominance transfers to B when the first dashed line labelled AB is encountered, and
remains with B above that dashed line (as shown in figure 6). However, if saddle A is
followed as ζ/t is increased from zero at a value of ρ/t greater than that where the
saddle coalescence occurs, e.g. at ρ/t = 0.0005, then this saddle remains dominant,
though when it reaches the neutral curve attributed to B at the top of figure 10 it has
evolved into saddle B (as shown in figure 8). Therefore, whether a saddle is considered
to be A or B depends on the path taken in the (ρ/t, ζ/t)-plane, and in particular
where that path lies relative to the saddle coalescence point. When we label a saddle,
it refers to the saddle on either the ζ/t = 0 axis or ρ/t = 0 axis; in the rest of the
(ρ/t, ζ/t)-plane the labelling is potentially ambiguous. Saddle B is unstable to the
right of its neutral curve, and D is unstable to the left of its neutral curve in figure 10,
but D is not dominant.

Having determined the propagation characteristics of an impulsive disturbance
for the relatively small propagation velocities near the origin of the (ρ/t, ζ/t)-plane
shown in figure 10, we now wish to extend this diagram to include the whole
unstable development of the wavepacket. This turns out to be a rather complicated
calculation. The main steps are summarized here, and also the final result.† The process
corresponds to the development of figure 10 from figures 5, 6, 8 and 9, where saddles
are located in complex α-planes, followed as ζ/t and ρ/t are varied, and the loci
of neutral saddles, and loci where pairs of saddles have the same heights, are mapped
out. The complication arises from the discovery that there are at least nine saddle
points in total, and a number of branch points connecting various Riemann surfaces
to one another. The arrangement of saddle points on these Riemann surfaces at a
particular point in the (ρ/t, ζ/t)-plane is obtained, allowing the dominant saddle to be
found at this point. In the example examined in the online supplement this dominant
unstable saddle is a quasi-mode. Some of the other saddles are quasi-modes with
arrangements of critical points in the complex z-plane like those shown in figures 2(c)
and 2(d). It is not necessary to carry out this analysis of the wavenumber plane at
many points in the (ρ/t, ζ/t)-plane. Instead, loci where pairs of saddles have equal
heights are mapped out, and changes of dominance examined near these loci, as and
when necessary.

Once the dominant saddle is known at any given point in the (ρ/t, ζ/t)-plane,
the bounding neutral curve of the disturbance can be computed, as can contours of
constant growth rate, and also the frame of reference with strongest growth. The
result is shown in figure 11.

This diagram is interpreted as follows: energy is regarded as being essentially
generated inside the boundary layer within the frame of reference moving at the
velocity of maximum growth rate, i.e. at ρ/t = 0.1066, ζ/t = 0, the real group velocity
of the disturbance, and which corresponds to the maximum temporal growth rate for
real α. Energy then diffuses away from this point of energy generation as this point
travels downstream. The flow is absolutely unstable because energy diffuses upstream
sufficiently fast for the bounding zero-growth-rate contour to intersect the ζ/t =0
axis with ρ/t < 0. Note also that the energy diffuses away from the energy generation

† Details are available in an online supplement to this paper.
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Figure 11. Solid lines are contours of constant growth rates Re(φm) defined by (4.2) with
values 0 (the outer most contour), 0.0002, 0.0004, 0.0006, 0.0008, 0.001, 0.002, 0.003 and 0.004
for β/ρ = 0.007. The strongest growing part of the disturbance grows at Re(φm/Re) = 0.00431,
it travels with velocity components ρ/t = 0.1066, ζ/t =0 and is shown by a black circle. The
other circles show saddle coalescence points, and the dashed lines terminating at these points
indicate where dominance of the saddles changes.

point in all directions, including out into the free stream, i.e. for ζ/t > 0, and that
the amplitude of the disturbance decays monotonically in all directions away from
the energy generation point. Nonetheless, the rate of diffusion does depend on the
direction from the energy generation point, and does so in such a manner that for
certain fixed values of ρ/t , the decay is not monotonic as ζ/t increases. For certain
values of ρ/t , including the important rest frame ρ/t = 0, there is greater growth at
a finite positive ζ/t than at ζ/t = 0.

This non-trivial diffusion of energy into the free stream explains how a disturbance
can seemingly propagate and grow indefinitely (at least until the neglected non-parallel
effects become important) in the wall-normal direction, even in the absence of basic
flow shear outside the boundary layer.

5. Numerical evaluation of an initial-value problem
The prediction of the preceding section that growth can occur in the wall-normal

direction in certain frames of reference is surprising, and the method by which
this prediction was made, of asymptotic large-time analysis based on saddles with
exponentially diverging eigenfunctions, might also seem a little surprising. Therefore,
in this section we present an independent solution method applied to a particular
initial-value problem based entirely on modes that have exponentially decaying
eigenfunctions.

We seek to evaluate (4.1) numerically using an integration path A in the complex
wavenumber plane that remains on the Riemann surface that has decaying eigen-
functions for an impulsive disturbance of given azimuthal wavenumber (essentially,
we construct the physical wavepacket solution outside the boundary layer from a
superposition of normal modes). For comparison with figures 6 and 11, we shall
consider β/ρ = 0.007. The arrangement of the spatial banches for ρ/t = ζ/t = 0 is the
same as that in figure 4(d), but we shall not move the branch-cut from the imaginary
axis. In principle, the integration path A can be taken along the real α-axis. However,
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Figure 12. Wall-normal disturbance profiles at a succession of times at θ = 0, ρ = 1 and
β/ρ = 0.007. The latest times shown are t1 = 2 × 105, t2 = 3 × 105, t3 = 4 × 105 and t4 = 5 × 105.
Each profile has been normalized to unit amplitude at ζ = 1, so that they can be compared
on the same diagram (the amplitudes increase dramatically with time due to the underlying
absolute instability).

the integrand of (4.1) is large and highly oscillatory at large times along that part
of the real α-axis where the temporal growth rates are largest. Instead, A has been
taken through the dominant saddle via a path that passes along the negative real
α-axis up to a small positive real α value, then vertically downwards to the right
of the imaginary α-axis to the level of the imaginary part of α at the dominant
saddle, horizontally along the steepest descent path through the saddle, then back
up to the real α-axis. The resulting path leads to a relatively well-behaved integrand,
even though it does not remain entirely within the valleys of the saddle point (it
leaves the valley as it passes down the side of the imaginary axis; remaining within
the valley would require moving the branch-cut and using exponentially diverging
eigenfunctions, which we are choosing to avoid here).

The integral (4.1) is evaluated by first calculating eigenvalues of the dispersion
relation for values of α at relatively closely spaced intervals along the path A described
above. The quantity ∆ω is calculated for the same points along A. The eigenvalues ω,
and ∆ω, are then assumed to vary linearly with α between adjacent points on A. At
the relatively large numerical values of t and ζ used in these numerical evaluations,
the size of the integrand can vary significantly. The total range of integration is
divided into the small intervals between successive points along A, and the complete
integral is obtained from the sum of all the integrals evaluated between successive
points on A. In this way, the size of the integrand does not vary greatly within each
integral, making it straightforward to evaluate each integral numerically. Checks on
accuracy were carried out by making sure that the result did not depend (within some
prescribed tolerance) on the number of points used to divide up the path A, nor on
the total length used for A (which obviously could not be taken to ±∞).

The integral (4.1) has been evaluated for a range of t and ζ for the impulsive
boundary forcing (2.10) with f̂ (t) = δ(t). The disturbance envelope, |ŵ(1, 0, ζ, t)|, is
shown in figure 12. It can be seen that for large enough times the amplitude is indeed
larger outside the boundary layer than inside it, and that the wall-normal propagation
comes to resemble a growing wavepacket propagating into the free stream. A crude
estimate of the group velocity of propagation in the wall-normal direction can be
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Figure 13. Wall-normal disturbance profiles at a succession of times at θ = 0, ρ = 1 and
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Each profile has been normalized to unit amplitude at ζ = 1, so that they can be compared
on the same diagram (the amplitudes increase dramatically with time due to the underlying
absolute instability).

obtained from the graph using the results at t3 and t4, giving ζ/t ≈ 0.005, which
agrees with the result of the saddle-point analysis based on exponentially divergent
eigenfunctions (which applies in the limit t → ∞) of ζ/t ≈ 0.0042 obtained from the
maximum growth rate of figure 6.

These results justify the removal of the branch-cut from the imaginary axis of
the complex α-plane, and the use of saddle points with exponentially diverging
eigenfunctions. We can, furthermore, confirm that the appearance of this growth and
propagation into the free stream is signalled by spatial branches crossing the imaginary
axis of the complex α-plane by repeating the numerical initial-value calculation for
β/ρ = 0.01. At this value of β/ρ the spatial branches do not cross the imaginary axis
of the complex α-plane before they pinch with the upstream propagating modes from
the lower half-plane (like in figure 4b), meaning that the growth rate will be largest
inside the boundary layer, as suggested by figure 7. The results of this numerical
integration are shown in figure 13. The growth rate is confirmed to be largest inside
the boundary layer, and the decay outside the boundary layer is not monotonic,
reflecting the non-monotonic reduction in growth rate with wall-normal propagation
velocity predicted by figure 7.

6. Conclusions
A spatio-temporal analysis of inviscid instability waves in the rotating-disk

boundary layer has been carried out. Spatial branches originating in the upper
half of the complex radial wavenumber plane are found to cross into the lower half-
plane, and then into the left half-plane as the imaginary part of the frequency
is reduced for sufficiently small azimuthal wavenumbers. (Or equivalently, the
integration path can only be kept within the valley of the dominant saddle by
taking it into the left half-plane.) A branch-cut is usually placed along the imaginary
axis of the complex radial wavenumber plane to restrict consideration to modes
with exponentially decaying eigenfunctions, which automatically satisfy the outer
homogeneous boundary condition. Following solutions into the left half-plane requires
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moving the branch-cut from the imaginary axis and using modes with exponentially
diverging eigenfunctions. Nonetheless, these diverging modes do have a useful physical
interpretation in the consideration of the initial-value problem. Certain saddles with
diverging eigenfunctions have been shown to describe the wall-normal growth and
propagation of disturbances outside the boundary layer.

These divergent saddles have also been used to calculate the disturbance as it
propagates in both the streamwise and wall-normal directions, allowing the energy
propagation properties to be determined and a description to be provided of how
growth can occur in the wall-normal direction in the absence of Reynolds stress terms
outside the boundary layer. A somewhat non-trivial diffusion of energy out of the
boundary layer and back upstream has been uncovered that sustains the growth seen
outside the boundary layer.

All of these predictions based on an asymptotic analysis of saddles with divergent
eigenfunctions have been confirmed by an independent solution of the initial-value
problem based on numerical evaluation of the inverse Fourier transforms for an
impulsive disturbance. This numerical evaluation represents a superposition of modes
each with decaying eigenfunctions, yet collectively they generate the growth predicted
in the wall-normal direction from the use of saddles with divergent eigenfunctions.
The propagation and growth observed in the rest frame ρ/t = 0 in figure 12 justifies
describing this new phenomenon as a new kind of convective instability. However,
it should be recalled that there is an underlying absolute instability in this inviscid
calculation, which was scaled out in figures 12 and 13. Healey (2006) shows that there
is absolute instability for arbitrarily small β/ρ for inviscid waves, but in principle in
the viscous problem there could be decay in the rest frame ρ/t = ζ/t = 0 with growth
in frames with ρ/t = 0, ζ/t > 0.

The familiar inviscid stability theorems do not apply to these modes with divergent
eigenfunctions. The derivations of these theorems rely upon the application of
homogeneous boundary conditions, but modes with divergent eigenfunctions do not
satisfy homogeneous boundary conditions. Examples have been found that violate
Howard’s semi-circle theorem where waves with negative phase velocity have been
found when the basic velocity profile is non-negative.

It should be emphasized, however, that although saddles with divergent eigen-
functions have been shown to be useful in predicting growth rates and propagation
velocities in the wall-normal direction, solutions of the initial-value problem always
do satisfy homogeneous boundary conditions.

Inviscid instability waves in the rotating-disk boundary layer have been shown to
have maximum growth propagating outside the boundary layer only when the scaled
azimuthal wavenumber β/ρ < 0.008424. The integer azimuthal wavenumber, n= βRe,
must be large for non-parallel effects to be negligible, which suggests that Re will
also have to be large, e.g. Re > 10/(β/ρ) > 1200, before our inviscid calculations are
likely to make quantitative predictions. Experiments on the rotating disk at these Re
show that the boundary layer is already turbulent. However, the effects of viscosity
on the new mechanism are not yet known, and it is possible that qualitatively similar
behaviour might be seen at lower Reynolds numbers.

Direct numerical simulations at these Re, like those by Davies & Carpenter
(2003), may be feasible, but resolving such a large domain in the z-direction could
be problematic. It also seems to be necessary to track the much faster growing
downstream convective part of the disurbance, since it is the diffusion of energy from
this part of the disturbance out into the free stream, and then back upstream, that
sustains the growth in the wall-normal direction. The existence of this kind of energy
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transfer mechanism represents an additional challenge in the numerical investigation
of global modes.

When streamwise spatial inhomogeneity is included in the basic flow there may
be new types of global modes and feedback mechanisms to be identified when the
evolution and dyamics outside the shear layer are considered. Although the flow
outside the rotating-disk boundary layer is uniform, there may be circumstances
where there is weak spatial inhomogeneity in the wall-normal direction as well,
opening up the possibility of global modes in this direction too.

The relatively long waves, slow growth rates and slow propagation velocities of the
new instability mechanism suggest that it could be further understood by developing
an asymptotic long-wave theory. This is indeed the case, see Healey (2005), where
the analytic structure of the disturbances, and scalings of various quantities with
(β/ρ) are given. The results suggest that growth in the wall-normal direction may
even be generic to a wide class of cross-flow instability problems at sufficiently long
wavelengths.

It is natural to wonder whether growth in the wall-normal direction might occur in
other flows as well. A necessary ingredient is that the flow be unbounded, and uniform,
in the direction normal to that of the basic flow, so that eigenfunctions are exponential
outside the shear layer. Branch-cuts are then introduced outside the shear layer, and if
modes cross these branch-cuts in the manner shown in figure 1(c), or figure 4(d), then
exponential growth outside the shear layer would be found. The addition of viscosity
generates additional exponential solutions in the uniform outer flow, with additional
branch-cuts, but they do not lie along the imaginary wavenumber axes, see Ashpis &
Reshotko (1990). These branch-cuts are further sources of potential growth outside
the shear layer. In fact, they represent growth out of viscous layers inside the shear
layer, and would generate explosively strong growth compared to the weak growth
seen in the inviscid problem because the Reynolds number appears in the exponent.
In principle, therefore, there could be growth outside boundary layers (as here), free
mixing layers and circular and plane jets and wakes.

Huerre & Monkewitz (1985) found an example of a saddle point crossing the
branch-cut in their inviscid spatio-temporal analysis of a free mixing layer, but they
did not consider such waves to be physical. Gallaire & Chomaz (2003) also found
this behaviour in a study of swirling jets for the axisymmetric mode n= 0, and
Lim & Redekopp (1998) found this behaviour in variable-density swirling jets. These
latter two papers modelled the basic flows with discontinuous and singular functions,
and it was argued that the seemingly unphysical divergent eigenfunctions only arose
because of their unphysical basic flow models. (For example, the discontinuous
Kelvin–Helmholtz profile has arbitrarily large growth rates for small-wavelength
disturbances, and represents an ill-posed initial-value problem). These problems would
bear further investigation using the methods developed here. It seems that swirling
jets can produce growth in the radial direction out into the free stream. One might
speculate whether this could be related to the phenomenon of vortex breakdown, or to
the ‘side-jet’ phenomenon found in experiments on heated circular jets by Monkewitz
et al. (1990), and references therein, in which disturbances are observed to be ejected
from the main jet into the surrounding uniform fluid.

However, another family of flows where growth out of a shear layer might be
observed at more realistic Reynolds numbers than for the rotating-disk boundary
layer considered here, are the flows produced when both the disk and the fluid far
from the disk are allowed to rotate with different angular velocities (the fluid far
from the disk is in rigid-body rotation). Batchelor (1951) showed that this family of
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flows can be described by a similarity solution, which reduces to the von Kármán
rotating-disk problem studied here when the fluid has zero angular velocity, reduces
to the Ekman (1905) layer when fluid and disk co-rotate at almost the same angular
velocity, and reduces to the Bödewadt (1940) layer when the disk is stationary and
the fluid rotates. The similarity structure also persists when there is a normal flow
through the disk wall, e.g. when there is wall suction, Stuart (1954), or blowing,
Kuiken (1971), and also when there is a forced axial flow towards an impermeable
disk, see Hannah (1952). Rotating-disk flows of electrically conducting fluids in the
presence of magnetic fields have also been calculated, and their stability investigated,
see Moresco & Alboussière (2004). Gorla (1992) has calculated the basic flow for a
rotating disk driving an electrically conducting fluid subject to a magnetic field with
suction at the disk. The methods described in the present paper could be applied
directly to all of these flows to investigate the phenomenon of growth out of a
boundary layer in a variety of contexts.

This work has benefited from helpful discussions with M. Ruderman and V. I.
Shrira.
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